Bayesian analysis of multivariate stochastic volatility with skew distribution

نویسنده

  • Jouchi Nakajima
چکیده

Multivariate stochastic volatility models with skew distributions are proposed. Exploiting Cholesky stochastic volatility modeling, univariate stochastic volatility processes with leverage effect and generalized hyperbolic skew t-distributions are embedded to multivariate analysis with time-varying correlations. Bayesian prior works allow this approach to provide parsimonious skew structure and to easily scale up for high-dimensional problem. Analyses of daily stock returns are illustrated. Empirical results show that the time-varying correlations and the sparse skew structure contribute to improved prediction performance and VaR forecasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic DEA with Using of Skew-Normal Distribution in Error Structure

The stochastic data envelopment analysis (SDEA) was developed considering the value ofinputs and outputs as random variables. Therefore, statistical distributions play an importantrole in this regard. The skew-normal (SN) distribution is a family of probability densityfunctions that is frequently used in practical situations. In this paper, we assume that the inputand output variables are skew-...

متن کامل

Bayesian analysis of stochastic volatility-in-mean model with leverage and asymmetrically heavy-tailed error using generalized hyperbolic skew Student's t-distribution.

A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive info...

متن کامل

Comparing the Efficiency of Dmus with Normal and Skew-Normal Distribution using Data Envelopment Analysis

  Data envelopment analysis (DEA) is a nonparametric approach to evaluate theefficiency of decision making units (DMU) using mathematical programmingtechniques. Almost, all of the previous researches in stochastic DEA have been usedthe stochastic data when the inputs and outputs are normally distributed. But, thisassumption may not be true in practice. Therefore, using a normal distribution wi...

متن کامل

Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student's t-distribution

Bayesian analysis of a stochastic volatility model with a generalized hyperbolic (GH) skew Student’s t-error distribution is described where we first consider an asymmetric heavy-tailness as well as leverage effects. An efficient Markov chain Monte Carlo estimation method is described exploiting a normal variance-mean mixture representation of the error distribution with an inverse gamma distri...

متن کامل

Fast estimation of multivariate stochastic volatility

In this paper we develop a Bayesian procedure for estimating multivariate stochastic volatility (MSV) using state space models. A multiplicative model based on inverted Wishart and multivariate singular beta distributions is proposed for the evolution of the volatility, and a flexible sequential volatility updating is employed. Being computationally fast, the resulting estimation procedure is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012